Computer Simulation of the VASIMR Engine
| Final Report
NASA Faculty Fellowship Program — 2004

Johnson Space Center

Prepared by: David Garrison

Academic Rank: Assistant Professor

University & Department University of Houston-Clear Lake
Physics Department
Houston, TX 77058

NASA/ISC

Directorate: Space and Life Sciences

Division: Advanced Space Propulsion Laboratory

Branch: N/A

JSC Colleague: John Shebalin

Date Submitted:

Contract Number:

August 13, 2004

NAG 9-1526



ABSTRACT

The goal of this project is to develop a magneto-hydrodynamic (MHD) computer code
for simulation of the VASIMR engine. This code is designed be easy to modify and use.
We achieve this using the Cactus framework, a system originally developed for research
in numerical relativity. Since its release, Cactus has become an extremely powerful and
flexible open source framework. The development of the code will be done in stages,
starting with a basic fluid dynamic simulation and working towards a more complex
MHD code. Once developed, this code can be used by students and researchers in order
to further test and improve the VASIMR engine.



INTRODUCTION
Variable Specific Impulse Magneto-plasma Rocket

The Variable Specific Impulse Magneto-plasma Rocket (VASIMR) is a project at
the Advanced Space Propulsion Laboratory (ASPL) at JSC [2]. The project is led from
NASA JSC, and has contracts with several government research centers, industrial
companies and universities. In addition, researchers from universities and institutes all
around the world collaborate with ASPL.

The Magneto-plasma rocket engine provides propulsion by ionizing and heating
neutral gases to high temperatures and then guiding them out of a magnetic nozzle in
order to produce thrust, much like a chemical rocket engine. However, the essential
difference between VASIMR and a chemical rocket engine is that VASIMR will produce
very high specific impulse at relatively low thrust (i.e., a low density, high velocity
exhaust), while a chemical rocket engine produces high thrust at relatively low specific
impulse (i.e., a high density, low velocity exhaust).

The particular niche filled by VASIMR in the electric propulsion community is
that of a relatively high-power plasma propulsion system that is focused on human space
flight, rather than on less massive unmanned, robotic space flight missions. The
efficiency of the engine permits a favorable ratio of payload mass to spacecraft mass, one
that allows long-duration space exploration missions to be realistically contemplated.

In its research configuration, VASIMR utilizes four co-axial magnetic coils and
two co-axial antennas to achieve its purpose. The first antenna is a so-called helicon
antenna, which serves as a plasma generator in that it ionizes an injected neutral gas
(typically hydrogen, deuterium or helium). The second antenna is known as the ion
cyclotron resonance heating (ICRH) antenna and it boosts the energy of the plasma by
feeding electromagnetic energy preferentially into the ions.

While the helicon antenna is primarily responsible for creating the plasma, the
second antenna is used to increase the ion energy and exhaust velocity, and thus the
specific impulse of the rocket engine. The magnetic coils work in concert to shape the
strong axial magnetic field that guides the strongly magnetized plasma (i.e., magneto-
plasma). The final magnetic coil (or a smaller auxiliary coil) serves as a magnetic nozzle,
by which the specific impulse and thrust of the plasma exhaust may be varied. When the
components are operating together, the result is the Variable Specific Impulse Magneto-
plasma Rocket, or VASIMR.

The magnetic nozzle gives VASIMR the unique ability to modulate the plasma
exhaust so as to maintain maximum power and efficiency. This technique is termed
“Constant Power Throttling” and is similar to adjusting the transmission on an
automobile. The VASIMR engine (specific impulse, I, ~ 15,000 sec), is designed to run
continuously, so that, although it has low thrust, any interplanetary transit time is
considerably reduced. In contrast, a chemical rocket, such as the space shuttle main

7-3



engine (I, ~ 450 sec), is designed to provide very high thrust, but only for about eight
minutes. A traditional chemical rocket lifts a space ship off of a planet and gtves it an
initial velocity, after which it is in free flight towards its objective.

The role of VASIMR is to provide thrust during what would have been
unpowered free flight, thereby shortening travel time. For example, using only a chemical
rocket would give a transit time of about 300 days to reach Mars. Adding VASIMR for
the interplanetary section of the journey (equipped with a nuclear power generation
system) would reduce the trip to as little as 39 days carrying 20 tons of cargo, or 115 days
for a larger 61-ton cargo load. Also, by minimizing transit time, physical stress and risk
to the crew is also minimized.

Our goal in this project is to create a computerized model of the VASIMR system
in order to understand the fluid dynamics and thermodynamics of plasma flow in the
engine and in its exhaust [4,5]. This model will incorporate variations of such system
parameters as magnetic coil current values and magnetic field structure. We found
Cactus to be the best framework for developing these models.

Cactus

Cactus [1] is an open source problem-solving environment designed for scientists
and engineers. The Cactus framework, which was originally developed for numerical
relativity research, has become an extremely powerful and flexible tool. Cactus
originated in the academic research community, where it was developed and used over
many years by a large international collaboration of physicists and computational
scientists. Its modular structure easily enables parallel computation across different
architectures and collaborative code development between different groups.

The name Cactus comes from the design of a central core (or "flesh™) that connects
to application modules (or "thorns") through an extensible interface'. Thorns can
implement custom developed scientific or engineering applications, such as
computational fluid dynamics. Other thorns from a standard computational toolkit
provide a range of computational capabilities, such as parallel I/O, data distribution, or
checkpointing.

Cactus runs on many architectures. Virtually all Unix based systems as well as
Windows NT are supported. Applications, developed on standard workstations or
laptops, can be seamlessly run on clusters or supercomputers. Cactus provides easy
access to many cutting edge software technologies being developed in the academic
research community, including the Globus Metacomputing Toolkit, HDF5 parallel file
I/O, the PETSc scientific library, adaptive mesh refinement, web interfaces, and
advanced visualization tools.

! See Appendix A

7-4



We chose to use Cactus because it is flexible, modular and well documented. The
Cactus development groups are quick to respond to questions and communication within
the development community is freely available. Also, efforts by the Cactus organization
as well as third party developers ensure that new features and bug fixes are constantly
being developed [3].

GOALS

The goal of this Faculty Fellowship Program (FFP) project was to test the
feasibility of using the Cactus framework to develop a magneto-hydrodynamic (MHD)
code for use with the VASIMR project. There are many differences between the existing
Cactus codes used in numerical relativity and the MHD codes used within the VASIMR
project. These differences had to be addressed in order to develop VASIMR simulations
within the Cactus framework.

An alternative to using Cactus would be to either develop a new MHD code from
scratch or to modify existing codes. However, the main motivation for switching to the
Cactus framework is to gain the support of existing documentation and a large
development community. Unlike existing software, a program developed with Cactus
will be relatively easy for shori-term workers (such as students) to modify and use
because of the well-designed structure of Cactus and its extensive support network and
documentation.

The Physics Program at the University of Houston — Clear Lake (UHCL) focuses
on a Masters degree in Physics. Our graduate students are required to complete a
research project or thesis but typically only have about a year to work on such a project.
Existing codes usually require several years to learn enough about the software to modify
and use on original research projects and are therefore not useful for short-term student
projects. This research program will provide a suitable vehicle for student theses because
original work can be completed in just a few months. This will also provide a framework
for the controlled evolution of software suitable for ASPL.

Development will be done in stages, starting with a basic fluid dynamic
simulation and working towards a more complex MHD code. The fluid code is designed
primarily to test the feasibility of installing and running Cactus on ASPL and UHCL
machines. The fluid code will eventually evolve into a full MHD code but before that
can happen several technological steps must be taken. These steps are outlined in the
section titled “Development Thorn”. Eventually, this code will then be used by students
and researchers to further design and improve the VASIMR engine.

INSTALLATION

The first step of this project involved installing Cactus on each of the
development machines and testing them using several existing sample thorns. The three
development machines were a dual processor Macintosh G4 machine at UHCL, a Linux
Beowulf cluster at ASPL and my personal Macintosh Powerbook G4. Each computer

7-3



was already equipped with both Fortran and C compilers but I also added additional
visualization tools (xgraph, ygraph and gnuplot) to the Macintosh machines.

The biggest challenge during the installation process was finding the correct
configuration for Cactus for each different hardware/software setup. The only way to
find the correct configuration for each operating system, compiler and software package
was to review the documentation and search through the computer’s directory structure
for the right parameters. This involved some trial and error and in a few cases, we had to
correct a few Unix login files. After a couple weeks of searching for the right
configurations, ali three machines were compiling and running the example codes well.

The test examples ranged for a simple “Hello World” screen printout to a scalar
wave simulation that used Cactus’ ability to steer computer simulations through a web
browser. These tests proved that all the compilers and tools were working correctly so
we could move on to the next step, developing an original thorn.

THE COMFLUID THORN

Instead of jumping right into the development of a full MHD thorn, we thought it
would be a good idea to first develop a compressible fluid simulation code which has a
similar geometry to the VASIMR engine. This involves using a cylindrical coordinate
grid and a set of coupled differential equations representing the number density and
velocity of particles in the fluid. This is effectively the same problem as in MHD except
that the fluid is not charged and there are no magnetic fields. The comfluid thorn was
then developed to further test to concept of using Cactus for fluid simulations. The
equations, which it evolved, are given below:

on

—+ V. (nV

0”t (n )

T o pogp=_tal V2
ot m n

where all units are MKS, ¥ is the particle flow velocity, n is the number density
(particle/m3 ), m is the atomic mass for the fluid under consideration, mass density
p=mn, Tis the fluid temperature (assumed to be constant here) and kg is the Boltzman
constant. In addition the energy and momentum is calculated at each grid point for use
in our analysis of the code’s performance. It should be noted that the above equations are
relatively simple, but are suitable to start with.

The equations were evolved in two dimensions in cylindrical coordinates ignoring
the angular direction. Because Cactus is based on a Cartesian grid, we had to write
subroutines to calculate gradients and divergences in cylindrical coordinates. We also
used periodic boundary conditions to “roll” the Cartesian grid into a cylindrical one. As
soon as a cylindrical grid thorn becomes available for Cactus, we plan to implement it
into our program.



The code compiled and ran on all three development machines without any
platform specific modifications. Slices taken in the radial and axial coordinates where
then used for data analysis®>. The initial data for the system modeled a Gaussian
distribution of particles with velocities pointing out towards the radial and axial
directions. As time evolved the particle distribution dispersed and the particles
disappeared out the edges of the simulation domain. Towards the end of the simulation,
boundary value errors begin to appear.

This test revealed two problems with the way the simulation was designed. 1)
Further work is needed to increase the stability of the code so that it can run longer before
significant errors occur. 2) Customized boundary conditions need to be implemented so
that we can make some boundaries reflective (example when the radial direction rho = 0)
while others are absorbing. Also, the stability of a finite differenced numerical code such
as this depends on several factors such as boundary conditions, grid spacing, time step
size and other parameters choices. Future work will involve increasing the stability of
the code as well as adding new features to make the simulation more realistic.

In order to coordinate the development of improvements to the code while not
destroying the progress that we have already made, we split the code and began work on
an advanced “development” version. The “stable” version was saved for later study
while the development version is continuously changed to improve stability and
experiment with new features.

DEVELOPMENT THORN
Time Integration

The first technique adopted in the development code is the Iterated Crank-
Nicholson time integrator. By using a second or higher order time integration technique
such as Iterated Crank-Nicholson or Runge-Kutta, we can further increase the stability of
the code. These techniques work well in numerical relativity and should work well for
our program. These systems work by correcting for small errors, which occur as we
evolve the equations from the solution at one time to the next. Instead of the growth in
errors depending directly on the time step, they depend on the time step squared. This
can decrease error growth by several orders of magnitude without a significant decrease
in computational speed.

Boundary Conditions

The stable version of our code currently depends on Cactus’ built in boundary
conditions. By developing our own boundary condition subroutines, we can reduce
errors at the boundary by “tuning” the boundaries to our system. Eventually we can
introduce absorbing boundary conditions, which eliminate computational artifacts such as
unwanted reflections and further reduce boundary errors. Most importantly, we can
choose where to apply reflective and absorbing boundary conditions in order to make our

? See Appendix B

7-7



simulation more realistic. If we are working in cylindrical coordinates, no information
should leave the grid when it passes through rho equals zero.

Spectral methods

Cactus is currently designed to use finite differencing as a method of numerically
calculating the derivatives of functions. Spectral methods have been shown to be much
more accurate and stable than finite difference methods but more difficult to implement.
There is currently an effort to develop a general spectral methods thorn for Cactus. Once
it has been released, we can begin testing it and eventually add it to our code.

Adaptive mesh refinement

Adaptive mesh refinement (AMR) is a technique where the grid spacing can
change depending on the dynamics of the code. This leads to greater accuracy in parts of
the grid where it is needed and less accuracy where it is not. This increases both
accuracy and computational efficiency. There is currently a third party Cactus Thorn that
adds AMR to Cactus.

Other improvements

There are several other improvements that can be made to the code including
improved initial conditions, the addition of dissipative terms, viscosity, temperature
variations in the fluid and much more. These improvements can be added as needed,
however, the focus of the code will be to test the concept of using Cactus for VASIMR
research and then to develop a MHD code.

Add MHD equations

The long-term goal of this project is to add the MHD equations and turn this fluid
dynamic code into a full MHD code [4,5]. This will involve adding a several more
evolution equations to the list of coupled differential equations. These include equations
for charge density, magnetic field, and the energies and momentum carried by both.
There is an additional difficulty at this point in understanding the dynamics of how these
equations are evolved and making them as stable as possible. Because of this it is to our
advantage to develop a modular, well documented and easy to understand code so that
future students can add equations with minimal intimidation.

7-8



APPENDIX A

Cactus program structure

QuickTime™ and a
TIFF (LZW) decompressor
are needed {o see this picture.



APPENDIX B
Preliminary Numerical Results
The energy of the compressible fluid flows to the boundary and disappears, boundary

errors develop. For both plots: Blue = early times, Red = late times, x = radial, z = axial.
Both plot where produced with ygraph. -

Figure 1 : Above is a plot of energy vs. radial position taken at several times. They
axis is energy amplitude while the x axis shows radial position.

7-10



Figure 2 : Above is a plot of energy vs. axial pesition taken at several times. The y
axis is energy amplitude while the x axis shows axial position.



REFERENCES

. Cactus, http://www.cactuscode.org

. Chang Diaz F. R. (2000) The VASIMR Rocket, Scientific American, 283, (5), 90-
97.

. Goodale, Tom, Cactus 4.0: An Introduction and Perspectives On Future Plans,
PowerPoint presentation.

. Tarditi, A. G. and J. V. Shebalin, MHD simulation of flow through the VASIMR
magnetic nozzle, APS Division of Plasma Physics Meeting, Oct. 2003.

. Tarditi, A. G., J. V. Shebalin, and E. A. Bering, MHD simulation of the exhaust
plume in the VASIMR advanced propulsion concept, XXIII General Assembly
of the International Union of Geodesy and Geophysics, [UGG2003, Sapporo,
Japan, June 2003

7-12





